이재영 | ifRC-CHESS 센터장 & 광주과학기술원 우수교수
Abstract
Electrochemical water splitting is one of the most reliable approaches for environmental-friendly hydrogen production. Because of their stability and abundance, Mn-based materials have been studied as electrocatalysts for the oxygen evolution reaction (OER), which is a more sluggish reaction in the water splitting system. To increase the OER activity of Mn, it is imperative to facilitate the structural change of Mn oxide to the active phase with Mn3+ species, known as the active site. Here, we present the relationship between the electronic conductivity in the catalyst layer and the formation of the Mn active phase, δ-MnO2, from wrinkled Mn(OH)2. Mn(OH)2 has poor conductivity, and it disrupts the oxidation reaction toward MnOOH or δ-MnO2. Adjacent conductive carbon to Mn(OH)2 enabled Mn(OH)2 to be oxidized to δ-MnO2. Furthermore, after repetitive cyclic voltammetry activation, the more conductive environment resulted in a higher density of δ-MnO2 through the irreversible phase transition, and thus it contributes to the improvement of the OER activity.
Journal 바로가기
이재영 | ifRC-CHESS 센터장 & 광주과학기술원 우수교수
Abstract
Electrochemical water splitting is one of the most reliable approaches for environmental-friendly hydrogen production. Because of their stability and abundance, Mn-based materials have been studied as electrocatalysts for the oxygen evolution reaction (OER), which is a more sluggish reaction in the water splitting system. To increase the OER activity of Mn, it is imperative to facilitate the structural change of Mn oxide to the active phase with Mn3+ species, known as the active site. Here, we present the relationship between the electronic conductivity in the catalyst layer and the formation of the Mn active phase, δ-MnO2, from wrinkled Mn(OH)2. Mn(OH)2 has poor conductivity, and it disrupts the oxidation reaction toward MnOOH or δ-MnO2. Adjacent conductive carbon to Mn(OH)2 enabled Mn(OH)2 to be oxidized to δ-MnO2. Furthermore, after repetitive cyclic voltammetry activation, the more conductive environment resulted in a higher density of δ-MnO2 through the irreversible phase transition, and thus it contributes to the improvement of the OER activity.
Journal 바로가기